How to simulate SFDR/IMD3 vs F_{in}

Marios Neofytou Data converters 2 – DAC design

Technische Universiteit **Eindhoven** University of Technology

APPRILL.

AND E. H

Where innovation starts

 \rightarrow How to setup the FFT (Spectrum) will be shown in the later steps

Technische Universiteit **Eindhoven** University of Technology

ADC L		А	DE L (1) -	DAC_55	D0	DAC_core_	tb sch	ematic					-	οx
<u>L</u> aunch	Session Setu	p <u>A</u> nalyses	<u>V</u> ariables	<u>O</u> utputs	Sin	nulation <u>R</u> e	sults	<u>T</u> ools	Calibre	e <u>H</u> elp	p		c ā d e i	nce
1100	27 🍞 🕽			4 🖻		_	_	_	_	_	_	_	_	
Design Variables					Analyse ADE Simulation Setup Toolbar								AC	
-	Name		Value	_		_ Туре	Ena	ble		Arg	guments			Trans
1 Junz	Name	20m/64	value		71	1 tran	2	0 1	.1u					98
I2 NrP	eriodsClk	1.024K			-11									⊳ ⊛-+
3 NrP	eriodsIn1	102)		-11	_								10 4
NrP	eriodsIn2	91			-11									×
5 Tsin	n	1.024u			-11									0
6 Varr	nlla	1.2			-11									-
7 Vda	taHigh	1.2			-11									0
x Vda	taLow	800m			-11	L								NA.
9 VloH	ligh	1.7			-11	Outputs							? 🖥 🗙	
10 VIol	.ow	700m			-11	Nar	ne/Sign	al/Expr	. alu	Plot	Save	Save C	Options	
10					-11	1 out_diff				2		allv		
					11	2 Spectrur	n			~	1.00			
									uto		DI #*		Replace	
> Re su	llts in /home/MSN	117/simulation	/DAC_core	_tb/spectre	e/scl	Plot after s	smulat	ion: @			Plottir	ig mode	(neprace	
01				_								1		
2(3) P	lotOutputs					Status: Re	ady	T=27 C	: Sim	ulator:	spectre	State	:state1_c	rig

Given a simulation time (Tsim), you can define the frequency of a signal based on the number of periods you fit in that time frame

In this example :

 $F_{clk} = \frac{NrPeriodsClk}{T_{sim}} = 1 \; GHz$

Ue Technische Universiteit Eindhoven University of Technology

FFT relevant simulation time

ALC					DEL (1) - DAC 55	EDO		e th sci	hemati	-					– v)
ò	aunch	Session	Setun A	Analyses	Variable	s Outputs	Sim	ulation	Pecults	Tools	Calib	re Hel	n		cā da	
-	aunan	5031011	oct <u>u</u> p <u>z</u>	andry ses		3 <u>o</u> utputs	2	Ididition	<u>N</u> e suits	10013	Cullo		٢		taue	nce
	1	🕽 🧊 🔽	.7	a >		2	1									_
D	esign Va	riables						Analy	se ADE S	imy/atio	on Setu	Toolb	ar	_	? 5 ×	C CAC
	esigniva	inables					_	Тур	e En	atie		Ar	ument	-		DC
	lunar	Name	-	20m/64	Value	2	-11	1 tran	2	0	1.1u					98
1	NaDor	ind cClk	4	2011/04			-11									1-00-4
2	NirPer	iodscik		1.024K												-04
1	NrDor	iodsln2		102			-11									×
	Tsim	IOUSINZ		1.024			-11									0
6	Vamn	lln		1.0240			-11									-
0 7	Vdata	High	1	1.2			-11									
/	Vdata	1 0W	5	800m			-11									6.5.0
0	VloHis	zh	1	1 7			-11	Outpu	its						? 🗗 🗙	
<u> </u>		w	7	700m			-11	N	lame/Sig	nal/Exp	r a	l Plot	Save	Save	Options	Ĩ
1	0 11020		,	/ 00111			-11	1 out_di	ff			2		allv		
							11	2 Spectr	um			~	1.22			
							11									
							11									
							11									
							11									
							11									
							11									
Ļ	Decide	in /horr-/	ACM1 7/-	rimulati	/DAC	na th/ana-tu		Plot afte	rsimula	tion:	Auto	-	Plotti	ng mod	e: Replac	e
2	 Result: 	s in /nome/r	VI 5IVI 1 7/5	simulation	/DAC_CO	re_to/spectr	e/sci							0		
2(3		tOutputs						Status	Ready	T=27	c sir	nulator	spectre	s Stat	e:state1	orig 📕
21-	,	roupus						1 2 6 6 2	neady	27	- 3"	naracon.	special	Jaa	2.30001_	∽'δ _

Total simulation time

 Given a simulation time (Tsim), you can define the frequency of a signal based on the number of periods you fit in that time frame

In this example :

 $F_{clk} = \frac{NrPeriodsClk}{T_{sim}} = 1 \; GHz$

→ The extra time is allowed such that you avoid taking incorrect samples for the FFT during start up of the simulation
 → The selection of the input frequencies will be discussed in the following slides.

Je Technische Universiteit Eindhoven University of Technology

FFT relevant simulation time

ADC		ADEL (1) - DAC	55ED0 DAC core th schematic	21
ti di la constante di la const	aunch Session Se	tup Analyses Variables Outp	uts Simulation Results Tools Calibre Help cadence	
-	• <u>-</u>		tes jundon liesans lieus cansie liespontation de linee	-
E	🚽 🧽 🖡 🔁	🖓 🎾 🖆 🗹 🛙	5	
De	sign Variables		Analyse ADE Simulation Setur Toolbar ? 3 × 344	
	Name	Value	1 tran 🕑 01.1u	1
1	lunary	20m/64		1
2	NrPeriodsClk	1.024K	28-	1 1
3	NrPeriodsIn1	102	×	
	NrPeriodsIn2	91		
5	Tsim	1.024u		
6	Vampiin	1.2	6	5
7	VdataHigh	1.2		1
8	VdataLow	800m		f
9	VloHigh	1.7	Outputs	
10	VIoLow	700m	Name/Signal/Expr all Plot Save Save Options	
			2 spectrum	
>	Results in /home/M	SM17/simulation/DAC core tb/sp	ectre/sc Plot after simulation: Auto Plotting mode: Replace	
in .				
2(3) Plot Outputs		Status: Ready T=27 C Simulator: spectre State: state1_orig	

Total simulation time

 Given a simulation time (Tsim), you can define the frequency of a signal based on the number of periods you fit in that time frame

In this example :

 $F_{clk} = \frac{NrPeriodsClk}{T_{sim}} = 1 \; GHz$

→ The extra time is allowed such that you avoid taking incorrect samples for the FFT during start up of the simulation
 → The selection of the input frequencies will be discussed in the following Steps

The following example will help you understand how to setup the FFT :

Lets say : $F_s = 1$ GHz Nfft = 1024 \rightarrow This is the number of FFT points Tsim = Nfft/F_s=1.024us

Now i want to calculate the FFT of the input frequency of 353 MHz.

 \rightarrow First things to consider :

a. My input frequency has to be highly uncorrelated with F_s

b. I have to fit an integer number of periods within the Tsim otherwise leakage will occur

 \rightarrow If you just use 353 MHz as an input frequency then :

NrPeriodsSin1 = 1.024us*353M/s = **361.472** > Not integer > Leakage!

 \rightarrow What you should do is the following :

- a. NrPeriodsSin1 = 1.024us*353MHz = **361.472**
- **b. closestPrimeNumber(**NrPeriodsSin) = 359
- c. F_{in new}= 359/1.024u = 3.50585937500000e+08

 \rightarrow Please keep in mind that even a single digit will make the difference in the FFT

 \rightarrow For the dual tone test :

→ The second frequency should be made such that AGAIN the NrPeriodsSin2 is integer in the relevant simulation time

Ue Technische Universiteit Eindhoven University of Technology

- → Right click on the measurement you want then → Send to ADE→ Generic expression
 → Now what is left is to run a parametric Frequency sweep to obtain SFDR vs NrPeriodsSin1/Tsim (=Input Frequency).
 YOU WILL VARY NrPeriodsSin1
- → If you also want the FFT setup, just click on the FFT and then on the calculator. Copy the expression and create a new output on the ADEL

Step 3 : Measurements – IMD3

\rightarrow Same setup as before but now two tones input

e Technische Universiteit Eindhoven University of Technology

Step 3 : Measurements – IMD3

→Tools→ Calculator

Step 3 : Measurements – IMD3

\rightarrow Enter the following expression:

value(db20(dft(v("/out_diff" ?result "tran") 0.076u 1.100u 1024 "Rectangular" 0
0 1)) 2*VAR("NrPeriodsIn2")/VAR("Tsim")-VAR("NrPeriodsIn1")/VAR("Tsim")
)

- \rightarrow Compare the result with the cursor measurement
- → If its the same copy the expression then go to ADEL → right click on the outputs → Edit :

Name: IMD3 – HF

Expression : paste the expression

Apply and OK

- → Run a parametric sweep on NrPeriodsIn1 : Remember you will have to keep |NrPeriodsIn1-NrPeriodsIn2 | constant
- → You can do that by simply defining NrPeriodsIn2 = NrPeriodsIn1+10(or 20 or 100 depending on the NFFT points and the target frequency difference between the two tones)

Now you are set to GO!

Technische Universiteit Eindhoven University of Technology