Technische Universiteit Eindhoven University of Technology

Advance CMOS Design (5SFC0)

2017 Semester A Quartile 2

Spectral Analysis

A Guide for FFT Simulations

Where innovation starts

TU

- We need, for our project, a tool to monitor the performance of the circuit
- Best way to achieve that for a T/H is the Spectral Analysis
- Spectral Analysis will provide a graph with the:
 - Power
 - Frequency
 - of the signal at the output of the T/H
- In that way we know that we have tracked correctly the input signal

Key words :

- Nfft \rightarrow Number of FFT points
- Fs \rightarrow Sampling Frequency
- Fin \rightarrow Signal's Frequency
- Tsim \rightarrow Simulation time

We can perform the FFT using Virtuoso/ADE L Cadence

- Simulation Set-Up
 - As a first step we can perform FFT at a simple sinewave source.
 - We expect the fundamental tone (input frequency) at 0 dB
 - Noise floor (due to simulators limitations)

- Simulation Set-Up
 - As a first step we can perform FFT at a simple sinewave source.
 - We expect the fundamental tone (input frequency) at 0 dB
 - Noise floor (due to simulators limitations)

ADE L set-up

Add 'strobeperiod= 1/Fs'

Double-click on transient analysis \rightarrow Choose 'Options' \rightarrow Choose 'Output'

After the end of the simulation :

- $\circ~$ Go to the transient plot window
- Select the 'measurements' option at the toolbar
- Select 'Spectrum'
- A new sub-window opens
- $\circ~$ Click on the transient waveform
- $\circ~$ You should see then the name of the waveform at the sub-window
- Press 'plot'
- $\,\circ\,$ A new sub-window with the spectrum will be added

Examples

- Example 1
 - Fs= 2 GHz
 - Fin= 100 MHz
 - Nfft = 1024
 - Tsim= Nfft*(1/Fs)

e Technische Universiteit Eindhoven University of Technology

• Example 1

- Example 2
 - Fs= 2 GHz
 - Fin= 91.796875 MHz
 - Nfft = 1024
 - Tsim= 1024*(1/Fs)

e Technische Universiteit Eindhoven University of Technology

• Example 2

Je Technische Universiteit Eindhoven University of Technolog

- Process for FFT Simulation Set-Up
 - a) Assume we want to have $F_s = 2 \text{ GHz}$
 - b) Assume we want to have F_{in} = 100 MHz
 - c) Assume Nfft=1024
 - d) What is the Fin value in order to have an accurate FFT?
 - e) Calculations

 $\frac{F_{in}}{F_s} \cdot Nfft = x$

Then we pick the closest Prime Number to $(x) \rightarrow x_{new}$

 $\frac{x_{new}}{Nfft}$, $F_s = F_{in,new}$ (After that calculation we use the new F_{in} at our simulations)

Note : There are plenty manuals/tutorials about FFT in the web. You can have a look for further details

